We use
cos^2x+sin^2x=1
sin^2x=1-cos^2x
sin^2(x/2)=1-cos^2(x/2)
Dividing by cos^2(x/2)
sin^2(x/2)/cos^2(x/2)=(1-cos^2(x/2))/cos^2(x/2)
tan^2(x/2)=(1-cos^2(x/2))/cos^2(x/2)
Therefore,
=1-(1-cos^2(x/2))/cos^2(x/2)
=(cos^2(x/2)-1+cos^2(x/2))/(cos^2(x/2))
=(2cos^2(x/2)-1)/(cos^2(x/2))=cosx/cos^2(x/2)
And,
1+tan^2(x/2)=1+(1-cos^2(x/2))/cos^2(x/2)
=(cos^2(x/2)+1-cos^2(x/2))/(cos^2(x/2))
=1/cos^2(x/2)
Therefore,
RHS=(1-tan^2(x/2))/(1+tan^2(x/2))=(cosx/cos^2(x/2))/(1/cos^2(x/2))
=cosx=LHS
QED