Question #ba1cf

2 Answers
Feb 25, 2017

LHS=cosx

=cos(x/2+x/2)

=cos(x/2)cos(x/2)-sin(x/2)sin(x/2)

=cos^2(x/2)-sin^2(x/2)

=(cos^2(x/2)-sin^2(x/2))/1

=(cos^2(x/2)-sin^2(x/2))/ (cos^2(x/2)+sin^2(x/2))

=(cos^2(x/2)/cos^2(x/2)-sin^2(x/2)/cos^2(x/2))/ (cos^2(x/2)/cos^2(x/2)+sin^2(x/2)/cos^2(x/2))

=(1-tan^2(x/2))/(1+tan^2(x/2))=RHS

Feb 25, 2017

See proof below

Explanation:

We use

cos^2x+sin^2x=1

sin^2x=1-cos^2x

sin^2(x/2)=1-cos^2(x/2)

Dividing by cos^2(x/2)

sin^2(x/2)/cos^2(x/2)=(1-cos^2(x/2))/cos^2(x/2)

tan^2(x/2)=(1-cos^2(x/2))/cos^2(x/2)

Therefore,

=1-(1-cos^2(x/2))/cos^2(x/2)

=(cos^2(x/2)-1+cos^2(x/2))/(cos^2(x/2))

=(2cos^2(x/2)-1)/(cos^2(x/2))=cosx/cos^2(x/2)

And,

1+tan^2(x/2)=1+(1-cos^2(x/2))/cos^2(x/2)

=(cos^2(x/2)+1-cos^2(x/2))/(cos^2(x/2))

=1/cos^2(x/2)

Therefore,

RHS=(1-tan^2(x/2))/(1+tan^2(x/2))=(cosx/cos^2(x/2))/(1/cos^2(x/2))

=cosx=LHS

QED