What is the integral int_0^(2sqrt(3)) x^3/sqrt(16 - x^2) dx?

1 Answer
Feb 27, 2017

40/3

Explanation:

Use the trig substitution x = 4sintheta. Then dx = 4costhetad theta. We adjust the bounds of integration accordingly.

int_0^sin(2sqrt(3)) (4sintheta)^3/sqrt(16 - (4sintheta)^2) * 4costheta d theta

int_0^sin(2sqrt(3)) (64sin^3theta)/sqrt(16 - 16sin^2theta) * 4costheta d theta

int_0^sin(2sqrt(3)) (64sin^3theta)/sqrt(16(1 - sin^2theta)) * 4costheta d theta

int_0^sin(2sqrt(3)) (64sin^3theta)/sqrt(16cos^2theta) * 4costheta d theta

int_0^sin(2sqrt(3)) (64sin^3theta)/(4costheta) * 4costheta d theta

int_0^sin(2sqrt(3)) 64sin^3theta d theta

int_0^sin(2sqrt(3)) 64(1 - cos^2theta)sin theta d theta

Now let u = costheta. Then du = -sintheta d theta and d theta = (du)/(-sintheta).

int_1^cos(sin(2sqrt(3))) 64(1 - u^2)sintheta * (du)/(-sintheta)

-int_1^cos(sin(2sqrt(3))) 64(1 - u^2)du

-int_1^cos(sin(2sqrt(3))) 64 - 64u^2 du

-[64u - 64/3u^3]_1^cos(sin(2sqrt(3))

-[64costheta - 64/3cos^3theta]_0^sin(2sqrt(3))

-[16sqrt(16 - x^2) - 1/3(16 - x^2)^(3/2)]_0^(2sqrt(3)

-(16sqrt(16 - (2sqrt(3))^2) - 1/3sqrt(16 - (2sqrt(3))^2)^(3/2) - (16sqrt(16 - 0) - 1/3(16 - 0)^(3/2)))

-16sqrt(4) + 1/3(4)^(3/2) + 16(4) - 1/3(64)

-32 + 8/3 + 64 - 64/3

40/3

Hopefully this helps!