What is the integral int_0^(2sqrt(3)) x^3/sqrt(16 - x^2) dx?
1 Answer
Explanation:
Use the trig substitution
int_0^sin(2sqrt(3)) (4sintheta)^3/sqrt(16 - (4sintheta)^2) * 4costheta d theta
int_0^sin(2sqrt(3)) (64sin^3theta)/sqrt(16 - 16sin^2theta) * 4costheta d theta
int_0^sin(2sqrt(3)) (64sin^3theta)/sqrt(16(1 - sin^2theta)) * 4costheta d theta
int_0^sin(2sqrt(3)) (64sin^3theta)/sqrt(16cos^2theta) * 4costheta d theta
int_0^sin(2sqrt(3)) (64sin^3theta)/(4costheta) * 4costheta d theta
int_0^sin(2sqrt(3)) 64sin^3theta d theta
int_0^sin(2sqrt(3)) 64(1 - cos^2theta)sin theta d theta
Now let
int_1^cos(sin(2sqrt(3))) 64(1 - u^2)sintheta * (du)/(-sintheta)
-int_1^cos(sin(2sqrt(3))) 64(1 - u^2)du
-int_1^cos(sin(2sqrt(3))) 64 - 64u^2 du
-[64u - 64/3u^3]_1^cos(sin(2sqrt(3))
-[64costheta - 64/3cos^3theta]_0^sin(2sqrt(3))
-[16sqrt(16 - x^2) - 1/3(16 - x^2)^(3/2)]_0^(2sqrt(3)
-(16sqrt(16 - (2sqrt(3))^2) - 1/3sqrt(16 - (2sqrt(3))^2)^(3/2) - (16sqrt(16 - 0) - 1/3(16 - 0)^(3/2)))
-16sqrt(4) + 1/3(4)^(3/2) + 16(4) - 1/3(64)
-32 + 8/3 + 64 - 64/3
40/3
Hopefully this helps!