Question #53ac5

1 Answer
Feb 27, 2017

The n-th derivative can be evaluated recursively as:

d^n/(dx^n) f(x) = 2 sin(x+(npi)/2) - d^(n-2)/(dx^(n-2))f(x)

with:

f(x) = xcosx

f'(x) = sin(x+pi/2) -xsinx

Explanation:

We can start from the first derivative:

f'(x) = d/dx (xcosx) = d/dx(x) cosx + x d/dx(cosx) = cosx -xsinx

Differentiating again:

(1) f''(x) = -sinx -[d/dx(x) sinx +x d/dx(sinx)] = -2sinx -f(x)

Now we know that:

d^n/(dx^n) sinx = sin(x+(npi)/2)

and in particular:

d^2/(dx^2) sinx = -sinx

so that we can write (1) as:

d^2/(dx^2) f(x) = 2 d^2/(dx^2) sinx - f(x)

and differentiating this equation we obtain a recursive formula for the derivatives of higher order:

d^n/(dx^n) f(x) = 2 d^n/(dx^n) sinx - d^(n-2)/(dx^(n-2))f(x)

or:

d^n/(dx^n) f(x) = 2 sin(x+(npi)/2) - d^(n-2)/(dx^(n-2))f(x)