Question #d1ec6 Trigonometry Trigonometric Identities and Equations Proving Identities 1 Answer Nghi N Feb 28, 2017 Develop the left side: #LS = (cos w(sin^2 w) + cos^3 w)/(1/cos u) = # #= cos^2 w( sin^2 w) + cos ^4w = cos^2 w(sin^2 w + cos^2 w) =# Since: #cos^2 w + sin^2 w = 1#, there for, #LS = cos^2 w#. Proved. Answer link Related questions What does it mean to prove a trigonometric identity? How do you prove #\csc \theta \times \tan \theta = \sec \theta#? How do you prove #(1-\cos^2 x)(1+\cot^2 x) = 1#? How do you show that #2 \sin x \cos x = \sin 2x#? is true for #(5pi)/6#? How do you prove that #sec xcot x = csc x#? How do you prove that #cos 2x(1 + tan 2x) = 1#? How do you prove that #(2sinx)/[secx(cos4x-sin4x)]=tan2x#? How do you verify the identity: #-cotx =(sin3x+sinx)/(cos3x-cosx)#? How do you prove that #(tanx+cosx)/(1+sinx)=secx#? How do you prove the identity #(sinx - cosx)/(sinx + cosx) = (2sin^2x-1)/(1+2sinxcosx)#? See all questions in Proving Identities Impact of this question 912 views around the world You can reuse this answer Creative Commons License