Use the chain rule on each term.
First term: y_1 = tan^4(x)y1=tan4(x)
Let u = tan(x)u=tan(x), then y = u^4, dy/(du)=4u^3, and (du)/dx = sec^2(x)y=u4,dydu=4u3,anddudx=sec2(x)
dy_1/dx = dy/(du)(du)/dxdy1dx=dydududx
dy_1/dx = 4u^3sec^2(x)dy1dx=4u3sec2(x)
dy_1/dx = 4tan^3(x)sec^2(x)dy1dx=4tan3(x)sec2(x)
Second term: y_2 = tan(x^5)y2=tan(x5)
Let u = x^2u=x2, then y = tan(u), dy/(du)=sec^2(u), and (du)/dx = 5x^4y=tan(u),dydu=sec2(u),anddudx=5x4
dy_2/dx = dy/(du)(du)/dxdy2dx=dydududx
dy_2/dx = sec^2(u)5x^4dy2dx=sec2(u)5x4
dy_2/dx = 5x^4sec^2(x^5)dy2dx=5x4sec2(x5)
Put both terms back into the expression:
dy/dx = dy_1/dx + dy_2/dxdydx=dy1dx+dy2dx
dy/dx = 4tan^3(x)sec^2(x) + 5x^4sec^2(x^5)dydx=4tan3(x)sec2(x)+5x4sec2(x5)