Question #cb109
1 Answer
Mar 1, 2017
We apply the identities
(cosx/sinx)/(1/sinx - sinx) = secxcosxsinx1sinx−sinx=secx
(cosx/sinx)/((1 - sin^2x)/sinx) = secxcosxsinx1−sin2xsinx=secx
cosx/sinx*sinx/(1 - sin^2x) = secxcosxsinx⋅sinx1−sin2x=secx
Now we can apply the identity
cosx/sinx * sinx/cos^2x = secxcosxsinx⋅sinxcos2x=secx
Eliminate:
1/cosx = secx1cosx=secx
And this is true by the reciprocal identity
Our identity has been proved :).
Hopefully this helps!