Question #cb109

1 Answer
Mar 1, 2017

We apply the identities cottheta = costheta/sinthetacotθ=cosθsinθ and csctheta = 1/sinthetacscθ=1sinθ, to obtain:

(cosx/sinx)/(1/sinx - sinx) = secxcosxsinx1sinxsinx=secx

(cosx/sinx)/((1 - sin^2x)/sinx) = secxcosxsinx1sin2xsinx=secx

cosx/sinx*sinx/(1 - sin^2x) = secxcosxsinxsinx1sin2x=secx

Now we can apply the identity cos^2theta + sin^2theta = 1cos2θ+sin2θ=1:

cosx/sinx * sinx/cos^2x = secxcosxsinxsinxcos2x=secx

Eliminate:

1/cosx = secx1cosx=secx

And this is true by the reciprocal identity sectheta = 1/costhetasecθ=1cosθ.

Our identity has been proved :).

Hopefully this helps!