Question #d780a

1 Answer
Jul 5, 2017

(g circ f)^(- 1) = - frac(1)(28) (x + 11)(gf)1=128(x+11)

Explanation:

We have: f(x) = 4 x + 3f(x)=4x+3 and g(x) = - 7 x + 10g(x)=7x+10

First, let's evaluate g circ fgf:

Rightarrow g circ f = g (f(x))gf=g(f(x))

Rightarrow g circ f = g (4 x + 3)gf=g(4x+3)

Rightarrow g circ f = - 7 (4 x + 3) + 10gf=7(4x+3)+10

Rightarrow g circ f = - 28 x - 21 + 10gf=28x21+10

Rightarrow g circ f = - 28 x - 11gf=28x11

Let's suppose y = g circ fy=gf.

We must now find the inverse of yy:

Rightarrow y = - 28 x - 11y=28x11

Interchanging variables:

Rightarrow x = - 28 y - 11x=28y11

Let's solve for yy:

Rightarrow x + 11 = - 28 yx+11=28y

Rightarrow y = - frac(1)(28) (x + 11)y=128(x+11)

therefore (g circ f)^(- 1) = - frac(1)(28) (x + 11)