Cos(2θ) + 34 sin2 θ = 25
=>1/sqrt(1^2+34^2)Cos(2θ) + 34/sqrt(1^2+34^2) sin2 θ = 25/sqrt(1^2+34^2)
Let
cosalpha=1/sqrt(1^2+34^2)
sinalpha=34/sqrt(1^2+34^2)
and
cos phi =25/sqrt(1^2+34^2)=> phi=cos^-1(25/sqrt(1^2+34^2)) =0.24pi
So tanalpha=34=>alpha = tan^-1(34)=0.49pi
The given equation becomes
cos2thetacosalpha+sin2thetasinalpha=coa phi
=>cos(2theta-alpha)=cosphi
=>cos(2theta-0.49pi)=cos(0.24pi)=cos (2pi-0.24pi)
so
=>2theta=(0.24+0.49)pi
=>theta=(0..365)pi
Again
=>2theta=(2-0.24+0.49)pi
=>theta=1.125pi
Further taking
cos(2theta-0.49pi)=cos(0.24pi)=cos (2pi+0.24pi)
=>2theta=(2+0.24+0.49)pi
=>theta=1.365pi