How do you integrate int e^(3x)dx?

2 Answers
Mar 12, 2017

The answer is =1/3e^(3x)+C

Explanation:

We need

inte^xdx=e^x+C

We do this integral by substitution

Let u=3x

du=3dx

dx=(du)/3

Therefore,

inte^(3x)dx=int1/3e^(u)du

=1/3e^(u)

=1/3e^(3x)+C

Mar 12, 2017

int e^(3x)dx =e^(3x)/3 +C

Explanation:

I = int e^(3x)dx

Let u=3x -> (du)/dx= 3

I = int e^u* 1/3du

= 1/3*e^u +C

Undo substitution:

I= e^(3x)/3 +C