Write sin(x-(3pi)/4)sin(x3π4) in terms of sinxsinx?

1 Answer
Apr 11, 2017

sin(x-(3pi)/4)=-1/sqrt2(sinx+sqrt(1-sin^2x))sin(x3π4)=12(sinx+1sin2x)

Explanation:

As sin(A-B)=sinAcosB-cosAsinBsin(AB)=sinAcosBcosAsinB

Hence sin(x-(3pi)/4)=sinxcos((3pi)/4)-cosxsin((3pi)/4)sin(x3π4)=sinxcos(3π4)cosxsin(3π4)

= sinxcos(pi-pi/4)-cosxsin(pi-pi/4)sinxcos(ππ4)cosxsin(ππ4)

= -sinxcos(pi/4)-cosxsin(pi/4)sinxcos(π4)cosxsin(π4)

= -sinx xx1/sqrt2-cosx xx1/sqrt2sinx×12cosx×12

= -1/sqrt2(sinx+cosx)12(sinx+cosx)

= -1/sqrt2(sinx+sqrt(1-sin^2x))12(sinx+1sin2x)