Question #8ab7c

1 Answer
Jan 5, 2018

cos(x-5pi/6)=1/2{sqrt(1-cos^2x)-sqrt3cosx}.

Explanation:

Prerequisites (1): cos(A-B)=cosAcosB+sinAsinB,

(2)(i): cos(pi-theta)=-costheta, (2)(ii) : sin(pi-theta)=sintheta,

(3)(i): cos(pi/6)=sqrt3/2, (3)(ii) sin(pi/6)=1/2,

(4): sintheta=sqrt(1-cos^2theta).

Now, cos(x-5pi/6)=cosxcos(5pi/6)+sinxsin(5pi/6),

=cosxcos(pi-pi/6)+sinxsin(pi-pi/6),

=(-cos(pi/6))cosx+sin(pi/6)sinx,

=-sqrt3/2cosx+1/2sinx,

=1/2(sinx-sqrt3cosx).

rArr cos(x-5pi/6)=1/2{sqrt(1-cos^2x)-sqrt3cosx}, is the

desired expression!