Prerequisites (1): cos(A-B)=cosAcosB+sinAsinB,
(2)(i): cos(pi-theta)=-costheta, (2)(ii) : sin(pi-theta)=sintheta,
(3)(i): cos(pi/6)=sqrt3/2, (3)(ii) sin(pi/6)=1/2,
(4): sintheta=sqrt(1-cos^2theta).
Now, cos(x-5pi/6)=cosxcos(5pi/6)+sinxsin(5pi/6),
=cosxcos(pi-pi/6)+sinxsin(pi-pi/6),
=(-cos(pi/6))cosx+sin(pi/6)sinx,
=-sqrt3/2cosx+1/2sinx,
=1/2(sinx-sqrt3cosx).
rArr cos(x-5pi/6)=1/2{sqrt(1-cos^2x)-sqrt3cosx}, is the
desired expression!