Question #1b4c7

1 Answer
Mar 17, 2017

(1) : (1):The GS is, (y^2-8)^2=ke^{arc tan (x/4)}.(y28)2=kearctan(x4).

(2) :(2): The PS is, (y^2-8)^2=e^{arc tan (x/4)-pi/4}.(y28)2=earctan(x4)π4.

Explanation:

dy/dx=(y^2-8)/(yx^2+16y)=(y^2-8)/{y(x^2+16)}={(y^2-8)/y}{1/(x^2+16)}.dydx=y28yx2+16y=y28y(x2+16)={y28y}{1x2+16}.

rArr y/(y^2-8)dy=dx/(x^2+16).yy28dy=dxx2+16.

This shows that the given Diff. Eqn. is of the Separable

Variable Type.

To find its General Solution (GS), we integrate it termwise.

:. inty/(y^2-8)dy+lnc=int1/(x^2+16)dx.

;. 1/2int{d/dy(y^2-8)}/(y^2-8)+lnc=int1/{x^2+4^2)dx.

:. 1/2ln|y^2-8|+lnc=1/4 arc tan (x/4).

:. 2ln|y^2-8|+4lnc=arc ran (x/4), i.e.,

ln(y^2-8)^2+lnc^4=arc tan (x/4), or,

ln{c^4(y^2-8)^2}=arc tan (x/4)

:. c^4(y^2-8)^2=e^{arc tan (x/4)}

Hence, the GS is, (y^2-8)^2=ke^{arc tan (x/4)}, k=1/c^4...(1)

To find its Particular Solution (PS), we have to use the

Initial Condition : y(x=4)=3," i.e., when, "x=4, y=3.

Subst.ing in (1), (9-8)^2=ke^{arc tan (4/4)}, i.e., 1=ke^(pi/4)

:. k=1/e^(pi/4)=e^(-pi/4).

Therefore, from (1), we have the PS : (y^2-8)^2=e^{arc tan(x/4)-pi/4}.

Enjoy Maths.!