Question #d7b02

2 Answers
Mar 8, 2017

See proof below

Explanation:

We need

cos^2x+sin^2x=1

cscx=1/sinx

cotx=cosx/sinx

Therefore,

RHS=cos thetasintheta+cos^3thetacsctheta

=costhetasintheta+cos^3theta/sintheta

=(costhetasin^2theta+cos^3theta)/sintheta

=(costheta(sin^2theta+cos^2theta))/sintheta

=costheta/sintheta

=cottheta

=LHS

Q.E.D

Mar 8, 2017

see explanation

Explanation:

Let we take a right hand side to prove left hand side.

cos theta sin theta + cos^3 theta csc theta = cos theta sin theta + cos^3 theta * 1/sin theta

multiply with

= (cos theta sin theta sin theta+ cos^3 theta) /sin theta

= (cos theta sin^2 theta + cos^3 theta) /sin theta

= (cos theta (1-cos^2 theta )+ cos^3 theta) /sin theta

note: sin^2 theta = 1 -cos^2 theta

= (cos theta - cancelcos^3 theta + cancelcos^3 theta) /sin theta

= cos theta /sin theta

= cot theta