How do you prove that (secx + tanx)/(cosx + cotx) = sinxsec^2x?

1 Answer
Mar 10, 2017

(1/cosx + sinx/cosx)/(cosx + cosx/sinx) = sinx(1/cos^2x)

((1 + sinx)/cosx)/((cosxsinx + cosx)/sinx) = sinx(1/cos^2x)

(1 + sinx)/cosx * sinx/(cosxsinx + cosx) = sinx(1/cos^2x)

(1 + sinx)/cosx * sinx/(cosx(sinx + 1)) = sinx(1/cos^2x)

sinx/cos^2x = sinx/cos^2x

Hopefully this helps!