Question #5c963

1 Answer
Jul 16, 2017

See explanation below.

Explanation:

1. f(x) = cos(x) - 4 tan(x)

Use the difference rule of differentiation:

Rightarrow f'(x) = frac(d)(dx)(cos(x)) - frac(d)(dx)(4 tan(x))

Rightarrow f'(x) = - sin(x) - 4 sec^(2)(x)

"

2. f(x) = - 6 cos(x) + 2 tan(x)

Use the sum rule of differentiation:

Rightarrow f'(x) = frac(d)(dx)(- 6 cos(x)) + frac(d)(dx)(2 tan(x))

Rightarrow f'(x) = 6 sin(x) + 2 sec^(2)(x)

Substitute frac(3 pi)(4) in place of x:

Rightarrow f'(frac(3 pi)(4)) = 6 sin(frac(3 pi)(4)) + 2 sec^(2)(frac(3 pi)(4))

Rightarrow f'(frac(3 pi)(4)) = 6 cdot frac(sqrt(2))(2) + 2 cdot (- sqrt(2))

Rightarrow f'(frac(3 pi)(4)) = 3 sqrt(2) - 2 sqrt(2))

Rightarrow f'(frac(3 pi)(4)) = sqrt(2)

"

3. f(x) = 7 sec(x)

Rightarrow f'(x) = 7 sec(x) tan(x)

Use the product rule:

Rightarrow f''(x) = 7 (sec(x) cdot frac(d)(dx)(tan(x)) + tan(x) cdot frac(d)(dx)(sec(x)))

Rightarrow f''(x) = 7 (sec(x) cdot sec^(2)(x) + tan(x) cdot sec(x) tan(x))

Rightarrow f''(x) = 7 (sec^(3)(x) + sec(x) tan^(2)(x))

Rightarrow f''(x) = 7 sec^(3)(x) + 7 sec(x) tan^(2)(x)