Question #a4762

1 Answer
Mar 12, 2017

d/dx(tanx)=sec^2xddx(tanx)=sec2x

Explanation:

Using the color(blue)"trigonometric identities"trigonometric identities

color(red)(bar(ul(|color(white)(2/2)color(black)(tanx=(sinx)/(cosx))color(white)(2/2)|)))

differentiate using the color(blue)"quotient rule"

"Given " f(x)=(g(x))/(h(x))" then"

color(red)(bar(ul(|color(white)(2/2)color(black)(f'(x)=(h(x)g'(x)-g(x)h'(x))/(h(x))^2)color(white)(2/2)|)))

"here "g(x)=sinxrArrg'(x)=cosx

"and "h(x)=cosxrArrh'(x)=-sinx

rArrf'(x)=(cosx(cosx)-sinx(-sinx))/(cos^2x)

color(white)(rArrf'(x))=(cos^2x+sin^2x)/(cos^2x)

• cos^2x+sin^2x=1" and " 1/(cos^2x)=sec^2x

rArrd/dx(tanx)=1/(cos^2x)=sec^2x

This result is a color(blue)"standard derivative" and worth remembering.

color(blue)"Note:" This is a Calculus question not Algebra