Evaluate (1-costheta)(1+sectheta)=tantheta?

2 Answers

theta=npi

Explanation:

(1-costheta)(1+sectheta)=tantheta

  • Let's distribute the terms:

1+sectheta-costheta-costhetasectheta=tantheta

  • Let's now use costheta=1/sectheta:

1+1/costheta-costheta-costheta1/costheta=tantheta

1+1/costheta-costheta-1=tantheta

1/costheta-costheta=tantheta

  • Let's combine the left side:

1/costheta-costheta(costheta/costheta)=tantheta

1/costheta-cos^2theta/costheta=tantheta

(1-cos^2theta)/costheta=tantheta

  • We can now use the identity: sin^2theta+cos^2theta=1=>sin^2theta=1-cos^2theta

sin^2theta/costheta=sintheta/costheta

i.e. sintheta(1-sintheta)=0

Therefore, either sintheta=0 or 1-sintheta=0 i.e. sintheta=1

But at sintheta=1, we have both tantheta and sectheta as undefined and hence theta=npi.

Mar 12, 2017

t = kpi, and
t = pi/2 + 2kpi

Explanation:

( 1 - cos t)(1 + 1/(cos t)) = tan t
((1 - cos t)(cos t + 1))/cos t = sin t/(cos t)
1 - cos^2 t = sin t
sin^2 t - sin t = 0
sin t( sin t - 1) = 0
Use unit circle to solve this equation.
a. sin t = 0 --> t = 0, t= pi, and t = 2pi
b. sin t - 1 = 0 --> sin t = 1 --> t = pi/2
General answers:
t = kpi
t = pi/2 + 2kpi