How would you evaluate the integral int_(-2)^(-7) sqrt(x^2 - 1)/x^3 dx?
1 Answer
The integral
Explanation:
Use the trig substitution
int_(sec(-7))^(sec(-2)) sqrt(((sec theta)^2 - 1))/sec^3theta * secthetatantheta d theta
int_(sec(-7))^(sec(-2)) sqrt(tan^2theta)/sec^2theta * tan theta d theta
int_(sec(-7))^(sec(-2)) tantheta/sec^2theta * tan theta d theta
int_(sec(-7))^(sec(-2)) tan^2theta/sec^2theta d theta
int_(sec(-7))^(sec(-2)) (sin^2theta/cos^2theta)/(1/cos^2theta)
int_(sec(-7))^(sec(-2)) sin^2theta
Now apply the power reduction formula
int_(sec(-7))^(sec(-2)) (1 - cos(2theta))/2
1/2int_(sec(-7))^(sec(-2)) 1 - cos2theta d theta
To integrate
int1/2cosudu
1/2sin(2theta)
We now put this back together.
1/2[theta - 1/2sin(2theta)]_(sec(-7))^(sec(-2))
We must now reverse the substitution.
1/2[sec^-1(x) - sqrt(x^2 - 1)/x]_(-7)^(-2)
An approximation of this gives
-0.34 .
Hopefully this helps!