How would you evaluate the integral int_(-2)^(-7) sqrt(x^2 - 1)/x^3 dx?

1 Answer
Mar 12, 2017

The integral int_(-7)^(-2) is equivalent to -0.34.

Explanation:

Use the trig substitution x = sectheta. Then dx = sec thetatantheta d theta.

int_(sec(-7))^(sec(-2)) sqrt(((sec theta)^2 - 1))/sec^3theta * secthetatantheta d theta

int_(sec(-7))^(sec(-2)) sqrt(tan^2theta)/sec^2theta * tan theta d theta

int_(sec(-7))^(sec(-2)) tantheta/sec^2theta * tan theta d theta

int_(sec(-7))^(sec(-2)) tan^2theta/sec^2theta d theta

int_(sec(-7))^(sec(-2)) (sin^2theta/cos^2theta)/(1/cos^2theta)

int_(sec(-7))^(sec(-2)) sin^2theta

Now apply the power reduction formula sin^2x = (1 - cos2x)/2.

int_(sec(-7))^(sec(-2)) (1 - cos(2theta))/2

1/2int_(sec(-7))^(sec(-2)) 1 - cos2theta d theta

To integrate cos2theta, we perform a u-substitution of u = 2theta -> du = 2d theta to get.

int1/2cosudu

1/2sin(2theta)

We now put this back together.

1/2[theta - 1/2sin(2theta)]_(sec(-7))^(sec(-2))

We must now reverse the substitution.

1/2[sec^-1(x) - sqrt(x^2 - 1)/x]_(-7)^(-2)

An approximation of this gives

-0.34.

Hopefully this helps!