Question #5f659

1 Answer
Mar 14, 2017

21+lnx+ln1+lnx11+lnx+1+C

Explanation:

Use the substitution u=1+lnx. This implies that du=1xdx and lnx=u1. Then:

1+lnxxlnxdx=uu1du

Now let v=u. This implies that v2=u, so (2v)dv=du.

=vv21(2v)dv=2v2v21dv

Rewriting the integrand as v21+1v21=1+1v21:

=2(1+1v21)dv

We can perform partial fraction decomposition on 1v21=1(v+1)(v1):

1v21=Av+1+Bv1

1=A(v1)+B(v+1)

Letting v=1 reveals that B=12 and letting v=1 reveals that A=12. Thus

1v21=12(v1)12(v+1)

Then the integral becomes:

=2(1+12(v1)12(v+1))dv

=2dv+dvv1dvv+1

These are simple integrals to find:

=2v+ln(|v1|)ln(|v+1|)+C

=2u+lnu1u+1+C

=21+lnx+ln1+lnx11+lnx+1+C