Question #5f659
1 Answer
Explanation:
Use the substitution
intsqrt(1+lnx)/(xlnx)dx=intsqrtu/(u-1)du
Now let
=intv/(v^2-1)(2v)dv=2intv^2/(v^2-1)dv
Rewriting the integrand as
=2int(1+1/(v^2-1))dv
We can perform partial fraction decomposition on
1/(v^2-1)=A/(v+1)+B/(v-1)
1=A(v-1)+B(v+1)
Letting
1/(v^2-1)=1/(2(v-1))-1/(2(v+1))
Then the integral becomes:
=2int(1+1/(2(v-1))-1/(2(v+1)))dv
=2intdv+int(dv)/(v-1)-int(dv)/(v+1)
These are simple integrals to find:
=2v+ln(abs(v-1))-ln(abs(v+1))+C
=2sqrtu+lnabs((sqrtu-1)/(sqrtu+1))+C
=2sqrt(1+lnx)+lnabs((sqrt(1+lnx)-1)/(sqrt(1+lnx)+1))+C