Question #5f659

1 Answer
Mar 14, 2017

2sqrt(1+lnx)+lnabs((sqrt(1+lnx)-1)/(sqrt(1+lnx)+1))+C

Explanation:

Use the substitution u=1+lnx. This implies that du=1/xdx and lnx=u-1. Then:

intsqrt(1+lnx)/(xlnx)dx=intsqrtu/(u-1)du

Now let v=sqrtu. This implies that v^2=u, so (2v)dv=du.

=intv/(v^2-1)(2v)dv=2intv^2/(v^2-1)dv

Rewriting the integrand as (v^2-1+1)/(v^2-1)=1+1/(v^2-1):

=2int(1+1/(v^2-1))dv

We can perform partial fraction decomposition on 1/(v^2-1)=1/((v+1)(v-1)):

1/(v^2-1)=A/(v+1)+B/(v-1)

1=A(v-1)+B(v+1)

Letting v=1 reveals that B=1/2 and letting v=-1 reveals that A=-1/2. Thus

1/(v^2-1)=1/(2(v-1))-1/(2(v+1))

Then the integral becomes:

=2int(1+1/(2(v-1))-1/(2(v+1)))dv

=2intdv+int(dv)/(v-1)-int(dv)/(v+1)

These are simple integrals to find:

=2v+ln(abs(v-1))-ln(abs(v+1))+C

=2sqrtu+lnabs((sqrtu-1)/(sqrtu+1))+C

=2sqrt(1+lnx)+lnabs((sqrt(1+lnx)-1)/(sqrt(1+lnx)+1))+C