Question #5f659
1 Answer
Explanation:
Use the substitution
#intsqrt(1+lnx)/(xlnx)dx=intsqrtu/(u-1)du#
Now let
#=intv/(v^2-1)(2v)dv=2intv^2/(v^2-1)dv#
Rewriting the integrand as
#=2int(1+1/(v^2-1))dv#
We can perform partial fraction decomposition on
#1/(v^2-1)=A/(v+1)+B/(v-1)#
#1=A(v-1)+B(v+1)#
Letting
#1/(v^2-1)=1/(2(v-1))-1/(2(v+1))#
Then the integral becomes:
#=2int(1+1/(2(v-1))-1/(2(v+1)))dv#
#=2intdv+int(dv)/(v-1)-int(dv)/(v+1)#
These are simple integrals to find:
#=2v+ln(abs(v-1))-ln(abs(v+1))+C#
#=2sqrtu+lnabs((sqrtu-1)/(sqrtu+1))+C#
#=2sqrt(1+lnx)+lnabs((sqrt(1+lnx)-1)/(sqrt(1+lnx)+1))+C#