How do you solve sin^2theta - cos^2theta = 0?

2 Answers
Mar 14, 2017

pi/4 + kpi
(3pi)/4 + kpi

Explanation:

From the trig identity:
cos^2 t - sin^2 t = cos 2t, we get:
sin^2 t - cos^2 t = - cos2t = 0
Unit circle gives 2 solutions:
cos 2t = 0 --> 2t = pi/2 + 2kpi, and 2t = (3pi)/2 + 2kpi a. 2t = pi/ + 2kpi --> t = pi/4 + kpi b. 2t = (3pi)/2 + 2kpi --> t = (3pi)/4 + kpi#

Mar 15, 2017

Here's an alternate answer. Recall the identity sin^2theta + cos^2theta = 1. If you rearrange for cos^2theta, you should get cos^2theta = 1-sin^2theta.

Substituting, we have:

sin^2theta - (1 - sin^2theta) = 0

sin^2theta - 1 + sin^2theta = 0

2sin^2theta = 1

sin^2theta = 1/2

sintheta = +- 1/sqrt(2)

Now consider the 1-1-sqrt(2) right triangle. This means that

theta = pi/4 +2pin, (3pi)/4 + 2pin, (5pi)/4 + 2pin and (7pi)/4 + 2pin

Note the period of the sine function is 2pi.

Hopefully this helps!