Question #2d730

2 Answers
Mar 14, 2017

x=1

Explanation:

Given sin^-1 x +2 cos^-1 x = pi/2

Therefore sin(sin^-1 x +2 cos^-1x) = sin pi/2

sin (sin^-1 x) cos (2cos^-1 x) +cos (sin^-1 x) sin (2cos^-1 x) =1

sin(sin^-1 x) equals x

sin(cos^-1 x) equals sqrt(1-x^2)

Now for evaluating cos(2cos^-1 x) and sin(2cos^-1 x), let cos^-1 x= theta, so that cos theta =x and sin theta = sqrt(1-x^2)

cos(2cos^-1 x) = cos 2theta= 2cos^2 theta -1= 2x^2 -1

sin(2cos^-1 x)= sin 2 theta= 2 cos theta sin theta =2xsqrt(1-x^2)

Using these values,

sin (sin^-1 x) cos (2cos^-1 x) +cos (sin^-1 x) sin (2cos^-1 x) =1

would become

x (2x^2 -1) +sqrt (1-x^2) 2x sqrt(1-x^2) =1

x(2x^2-1) +2x(1-x^2) =1

which simplifies to x=1

The above result is although quite obvious from the text of the question itself, realising that Sin^-1 1= pi/2 and cos^-1 1 =0

Mar 15, 2017

sin^-1x+2cos^-1x=pi/2

=>(sin^-1x+cos^-1x)+cos^-1x=pi/2

=>pi/2+cos^-1x=pi/2

=>cos^-1x=pi/2-pi/2=0

=>x=cos0=1