Question #74920

2 Answers
Mar 15, 2017

2sin^2x+sin2x=0

=>2sin^2x+2sinxcosx=0

=>2sinx(sinx+cosx)=0

So sinx=0=sin0=sinpi=sin2pi

=>x=0 or pi or 2pi

=>x=0^@ or 180^@ or 360^@

Again

#=>sinx+cosx=0

=>sinx=-cosx

#=>sinx/cosx=-1

=>tanx=-1

=>tanx=-tan(pi/4)=tan(pi-pi/4)=tan(2pi-pi/4)

So

x=(3pi)/4 or 135^@ and (7pi)/4 or 315^@

Mar 15, 2017

0, (3pi)/4, pi, (7pi)/4, 3pi

Explanation:

2sin^2 x + 2sin x.cos x = 0
sin x(sin x + cos x) = 0
a. sin x = 0 --> 3 solution arcs -->
x = 0, x = pi, x = 2pi
b. sin x + cos x = 0
From trig identity :
sin x + cos x = sqrt2cos (x - pi/4), we get:
cos (x - pi/4) = 0 --> 2 solutions -->
x - pi/4 = pi/2 --> x = pi/2 + pi/4 = (3pi)/4
x - pi/4 = (3pi/2) --> x = (3pi)/2 + pi/4 = (14pi)/8 = (7pi)/4
Answers for (0, 2pi):
0, (3pi)/4, pi, (7pi)/4, 2pi