What is the general solution of the differential equation ? 2xdy/dx = 10x^3y^5+y
1 Answer
y = (sqrt(x))/root(4)((C - 4x^5))
Explanation:
We have:
2xdy/dx = 10x^3y^5+y
We can rewrite as:
dy/dx = 5x^2y^5+y/(2x)
:. dy/dx - y/(2x) = 5x^2y^5
This is a Bernoulli equitation which has a standard method to solve. Let:
u = y^(-4) => (du)/dy = -4y^(-5) anddy/(du) = -y^5/4
By the chain rule we have;
dy/dx = dy/(du)*(du)/dx
Substituting into the last DE we get;
(-y^5/4)((du)/dx) -y/(2x) = 5x^2y^5
:. (du)/dx + 2y^(-4)/(x) = -20x^2
:. (du)/dx + 2/xu = -20x^2
So the substitution has reduced the DE into a first order linear differential equation of the form:
(d zeta)/dx + P(x) zeta = Q(x)
We solve this using an Integrating Factor
I = exp( \ int \ P(x) \ dx )
\ \ = exp( int \ 2/x \ dx )
\ \ = exp( 2 lnx )
\ \ = exp( lnx^2 )
\ \ = x^2
And if we multiply the last by this Integrating Factor,
:. (du)/dx + 2/xu = -20x^2
:. x^2(du)/dx + 2xu = -20x^4
:. d/dx (x^2u) = -20x^4
Which is now a trivial separable DE, so we can "separate the variables" to get:
x^2u = int \ -20x^4 \ dx
And integrating gives us:
\ \ \ \ \ x^2u = -20x^5/5 + C
:. x^2u = -4x^5 + C
Restoring the substitution we get:
\ x^2y^(-4) = -4x^5 + C
:. y^(-4) = (C - 4x^5)/x^2
:. \ \ \ y^4 = x^2/(C - 4x^5)
:. \ \ \ \ \ y = (x^2/(C - 4x^5))^(1/4)
:. \ \ \ \ \ y = (sqrt(x))/root(4)((C - 4x^5))