Question #fbe84

1 Answer
Mar 18, 2017

The answer is =1/2ln(x^2+1)+1/(2x^2+2)+C

Explanation:

We perform this integration by substitution

Let u=x^2+1

du=2xdx

xdx=(du)/2

Therefore,

int(x^3dx)/(x^2+1)^2=int(x^2*xdx)/(x^+1)^2

=1/2int((u-1)du)/u^2

=1/2int(1/u-1/u^2)du

=1/2int(du)/u-1/2int(du)/u^2

=1/2lnu+1/2*1/u

=1/2ln(x^2+1)+1/(2x^2+2)+C