Question #0da0d

1 Answer
Mar 19, 2017

xln(x^2+1)-2x+2arc tanx+C.

Explanation:

Let I=intln(x^2+1)dx=int{(ln(x^2+1)(1)}dx.

We use the following Rule of Integration by Parts (IBP) :

(IBP) : intuvdx=uintvdx-int{((du)/dx)(intvdx)}dx.

We take : u=ln(x^2+1) :. (du)/dx=1/(x^2+1)d/dx(x^2+1), i.e.,

(du)/dx=(2x)/(x^2+1)." Also, "v=1 rArr intvdx=x.

Hence, I=xln(x^2+1)-int{((2x)/(x^2+1))(x)}dx.

=xln(x^2+1)-2intx^2/(x^2+1)dx

=xln(x^2+1)-2int{(x^2+1)-1}/(x^2+1)dx.

=xln(x^2+1)-2int{(x^2+1)/(x^2+1)-1/(x^2+1)}dx.

=xln(x^2+1)-2int1dx+2int1/(x^2+1)dx.

:. I=xln(x^2+1)-2x+2arc tanx+C.

Enjoy Maths.!