Question #3829a

1 Answer
Jul 4, 2017

y(x) = 4sqrt((1+x)/(3+x))

Explanation:

Perform partial fractions decomposition

1/((1+x)(3+x)) = A/(1+x)+B/(3+x)

1/((1+x)(3+x)) = (A(3+x)+B(1+x))/((1+x)(3+x))

1/((1+x)(3+x)) = ( (A+B)x +(3A+B) ) / ( (1+x) (3+x) )

{(A+B=0),(3A+B=1):}

{(A=-B),(-3B+B=1):}

{(A=1/2),(B=-1/2):}

So:

1/((1+x)(3+x)) = 1/(2(1+x))-1/(2(3+x))

Solve now:

dy/dx = y/((1+x)(3+x))

Separate the variables:

dy/y = dx/((1+x)(3+x))

lnabsy = int dx/((1+x)(3+x)) = 1/2 int dx/(1+x) -1/2int dx/(3+x)+C

lnabsy = 1/2 ln abs(1+x) -1/2ln abs(3+x) +C

For x > -1 both arguments are positive, so:

lnabsy = 1/2 ln (1+x) -1/2ln (3+x) = ln sqrt((1+x)/(3+x))+C

Taking the exponential:

absy = c_1 sqrt((1+x)/(3+x))

where c_1=e^C is positive. Admitting also negative value for c_1 and noting that y(x) = 0 is also a solution, then the general solution is:

y(x) = c sqrt((1+x)/(3+x)) with c in RR

We can determine the particular solution for:

y(1) = 2

c sqrt((1+1)/(3+1)) = 2

c sqrt(1/4) = 2

c/2= 2

c=4

Finally:

y(x) = 4sqrt((1+x)/(3+x))