Solve dy/dx=xye^(3x) ?

2 Answers
Mar 20, 2017

y=1/9e^(1/9e^(3x)(3x-1)

Explanation:

dy/dx=xye^(3x)

int1/ydy=intxe^(3x)dx

ln|y|=1/9e^(3x)(3x-1)+lnk

ln1=1/9e^0(3(0)-1)+lnk

k=1/9

ln|y|-ln(1/9)=1/9e^(3x)(3x-1)

ln|9y|=1/9e^(3x)(3x-1)

9y=e^(1/9e^(3x)(3x-1)

y=1/9e^(1/9e^(3x)(3x-1)

Mar 20, 2017

y = e^((x/3-1/9)e^(3 x)+1/9)

Explanation:

This is a separable differential equation. It can be arranged as

f_1(x)dx=f_2(y)dy

with f_1(x)=x e^(3x) and f_2(y)=1/y

Integrating we have

F_1(x)+C=F_2(y)

with

F_1(x)= (x/3-1/9)e^(3 x) and

F_2(y)=log(y)

so

log(y)=(x/3-1/9)e^(3 x)+C or

y = C_1e^((x/3-1/9)e^(3 x))

solving for initial conditions

1=C_1 e^((0/3-1/9)e^(3 xx 0)) giving

C_1=e^(1/9) and finally

y=e^(1/9)e^((x/3-1/9)e^(3 x)) = e^((x/3-1/9)e^(3 x)+1/9)