(dv)/(dt) + lambda v =e^(-alpha/3t)dvdt+λv=eα3t ?

1 Answer
Mar 21, 2017

See below.

Explanation:

The differential equation describing the truck movement is a linear non homogeneous differential equation

(dv)/(dt) + lambda v =e^(-alpha/3t)dvdt+λv=eα3t

The solution for those type of equations can be obtained as the sum of two solutions. The solution to the homogeneous equation

(dv_h)/(dt)+lambda v_h = 0dvhdt+λvh=0

plus the particular solution

(dv_p)/(dt) + lambda v_p =e^(-alpha/3t)dvpdt+λvp=eα3t

After that, v = v_h + v_pv=vh+vp

Obtaining v_hvh is quite easy

We propose v_h = C e^(xi t)vh=Ceξt then substituting into the homogeneous

lambda C e^(xi t)+xi C e^(xi t)=C(lambda+ xi)e^(xi t)=0λCeξt+ξCeξt=C(λ+ξ)eξt=0

This condition is satisfied for lambda + xi = 0λ+ξ=0 or

xi = -lambdaξ=λ

and v_h = C e^(-lambda t)vh=Ceλt

The particular is obtained supposing that C = C(t)C=C(t) and introducing into the complete equation

d/(dt)(C(t)e^(-lambda t))+lambda C(t)e^(-lambda t)=e^(-alpha/3t)ddt(C(t)eλt)+λC(t)eλt=eα3t

so we obtain

(dC)/(dt)e^(-lambda t)=e^(-alpha/3 t)dCdteλt=eα3t

then

(dC)/(dt) = e^((lambda-alpha/3)t)dCdt=e(λα3)t and integrating

C(t) = e^((lambda-alpha/3)t)/(lambda-alpha/3)C(t)=e(λα3)tλα3

and finally

v = C_0 e^(-lambda t)+e^((lambda-alpha/3)t)/(lambda-alpha/3)e^(-lambda t) = C_0 e^(-lambda t)+e^(-alpha/3t)/(lambda-alpha/3)v=C0eλt+e(λα3)tλα3eλt=C0eλt+eα3tλα3