Question #08381

2 Answers
Mar 21, 2017

1

Explanation:

Remember cot(x) = cos(x)/sin(x)

((cos^2(x)/sin^2(x))cos^2(x))/((cos^2(x)/sin^2(x))-cos^2(x))

((cos^2(x)/sin^2(x))(cos^2(x)/1))/((cos^2(x)/sin^2(x))-((cos^2(x)sin^2(x))/sin^2(x))

(cos^4(x)/sin^2(x))/((cos^2(x)-sin^2(x)cos^2(x))/sin^2(x))

cos^4(x)/(cos^2(x)-sin^2(x)cos^2(x))

cos^4(x)/(cos^2(x)(1-sin^2(x))

cos^2(x)/(1-sin^2(x))

Use trig identities, specifically:
sin^2(x)+cos^2(x)=1
cos^2(x)=1-sin^2(x)

cos^2(x)/cos^2(x)

1

Mar 27, 2017

(cot^2xcos^2x)/(cot^2x-cos^2x)

=((csc^2x-1)cos^2x)/(cot^2x-cos^2x)

=((1/sin^2x-1)cos^2x)/(cot^2x-cos^2x)

=(cos^2x/sin^2x-cos^2x)/(cot^2x-cos^2x)

=(cot^2x-cos^2x)/(cot^2x-cos^2x)=1