Question #ad5d2

1 Answer
Apr 3, 2017

12lnx32+6xx25+C

Explanation:

I=dx(x3)6xx25

Complete the square in the square root:

I=dx(x3)(x26x+9)5+9

I=dx(x3)4(x3)2

Let x3=t. This implies that dx=dt:

I=dtt4t2

Now let t=2sinθ. This implies that dt=2cosθdθ.

I=2cosθdθ2sinθ44sin2θ

Note that 44sin2θ=21sin2θ=2cosθ:

I=2cosθdθ2sinθ(2cosθ)

I=12cscθdθ

This is a well known integral:

I=12ln|cscθ+cotθ|

I=12ln1+cosθsinθ

I=12ln∣ ∣sinθ1+1sin2θ∣ ∣

Our substitution t=2sinθ implies that sinθ=t/2:

I=12ln∣ ∣ ∣t/21+1(t/2)2∣ ∣ ∣

Note that 1(t/2)2=4t24=124t2:

I=12ln∣ ∣t/21+124t2∣ ∣

I=12lnt2+4t2

Using t=x3:

I=12lnx32+6xx25+C