Question #9651f

1 Answer
Apr 17, 2017

(a)

y' = e^x/e^y

This is separable :

e^y y' = e^x

Integrate both sides wrt x:

int e^y y' dx =int e^x dx

= int d/dx (e^y ) dx = e^x + C

implies e^y = e^x + C

y(0) = 1 implies e = 1 + C implies C = e-1

So:

e^y = e^x + e - 1

Or:

y = ln (e^x + e - 1)

(b)

x' = e^x/e^y

Again separable :

e^(-x) x' = e^(-y)

This time, integrate both wides wrt y:

int e^(-x) x' dy=int e^(-y) dy

int d/dy ( - e^(-x)) dy=- e^(-y) + C

- e^(-x) = - e^(-y) + C

y(0) = 1 implies -1 = - 1/e + C implies C = 1/e -1

- e^(-x) = - e^(-y) + 1/e -1

e^(-y) = e^(-x) + 1/e -1

-y = ln ( e^(-x) + 1/e -1 )

y = ln ( 1/( e^(-x) + 1/e -1 ))