How do you find the integral int x^2/((x-1)^2(x+1)) dx ?

1 Answer
Apr 10, 2017

int x^2/((x-1)^2(x+1)) dx = 3/4 ln abs(x-1)-1/(2(x-1))+1/4 ln abs(x+1) + C

Explanation:

x^2/((x-1)^2(x+1)) = A/(x-1)+B/(x-1)^2+C/(x+1)

color(white)(x^2/((x-1)^2(x+1))) = (A(x-1)(x+1)+B(x+1)+C(x-1)^2)/((x-1)^2(x+1))

color(white)(x^2/((x-1)^2(x+1))) = (A(x^2-1)+B(x+1)+C(x^2-2x+1))/((x-1)^2(x+1))

color(white)(x^2/((x-1)^2(x+1))) = ((A+C)x^2+(B-2C)x+(-A+B+C))/((x-1)^2(x+1))

Equating coefficients:

{ (A+C=1), (B-2C=0), (-A+B+C=0) :}

Adding all three equations, we find:

2B=1

So:

B=1/2

Then from the second equation, we find:

C=1/4

Then from the first equation we find:

A=3/4

So:

int x^2/((x-1)^2(x+1)) dx = int (3/4*1/(x-1)+1/2*1/(x-1)^2+1/4*1/(x+1)) dx

color(white)(int x^2/((x-1)^2(x+1)) dx) = 3/4 ln abs(x-1)-1/(2(x-1))+1/4 ln abs(x+1) + C