Question #64888

1 Answer
Mar 22, 2017

1/((1+x)(3+x)) = 1/(2 (1+x)) - 1/(2(3+x))

y = 2 sqrt2 sqrt ((1+x)/(3+x))

Explanation:

1/((1+x)(3+x)) = alpha/ (1+x) + beta/(3+x)

= (alpha(3+x)+ beta(1+x))/((1+x)(3+x)) = 1/((1+x)(3+x))

Look at numerators and let x = -1

implies 2 alpha = 1, alpha = 1/2

Look at numerators and let x = -3

implies -2 beta = 1, beta = -1/2

implies 1/((1+x)(3+x)) = 1/(2 (1+x)) - 1/(2(3+x))

Your DE is now:

y' = y (1/(2 (1+x)) - 1/(2(3+x)))

This separates as:

(2y')/ y = 1/( (1+x)) - 1/((3+x))

We integrate wrt x:

2 int 1/ y y' dx = int 1/( (1+x)) - 1/((3+x)) dx

By chain rule:

= 2 int 1/ y dy = int 1/( (1+x)) - 1/((3+x)) dx

implies 2 ln y = ln (1+x) - ln(3+x) + C

With C as a generic constant, ie the actual letter is oblivious to operations:

implies ln y = ln sqrt ((1+x)/(3+x)) + C

Put both sides to power of e:

e^(ln y) = e^( ln sqrt ((1+x)/(3+x)) + C)

y = e^( ln sqrt ((1+x)/(3+x))) e^ C = C sqrt ((1+x)/(3+x))

y(1) = 2 implies 2 = C cdot sqrt(2/4) implies C = 2 sqrt 2

implies y = 2 sqrt2 sqrt ((1+x)/(3+x))