Question #cbd67

1 Answer
Mar 22, 2017

int (x^3dx)/(x^2+2x+1) = (x^3-3x^2-9x-3)/(2(x+1)) + 3lnabs(x+1)+Cx3dxx2+2x+1=x33x29x32(x+1)+3ln|x+1|+C

Explanation:

Note that the denominator is:

x^2+2x+1 = (x+1)^2x2+2x+1=(x+1)2

so we can substitute t=x+1t=x+1, x=t-1x=t1, dx=dtdx=dt and have:

int (x^3dx)/(x^2+2x+1) = int ((t-1)^3dt)/t^2x3dxx2+2x+1=(t1)3dtt2

int (x^3dx)/(x^2+2x+1) = int ((t^3-3t^2+3t-1)dt)/t^2x3dxx2+2x+1=(t33t2+3t1)dtt2

int (x^3dx)/(x^2+2x+1) = int (t-3+3/t-1/t^2)dtx3dxx2+2x+1=(t3+3t1t2)dt

Using the linearity of the integral:

int (x^3dx)/(x^2+2x+1) = int tdt -3int dt +3int (dt)/t-int (dt)/t^2x3dxx2+2x+1=tdt3dt+3dttdtt2

int (x^3dx)/(x^2+2x+1) = t^2/2 -3t +3lnabst+1/t+Cx3dxx2+2x+1=t223t+3ln|t|+1t+C

and undoing the substitution:

int (x^3dx)/(x^2+2x+1) = (x+1)^2/2 -3(x+1) + 1/(x+1) + 3lnabs(x+1)+Cx3dxx2+2x+1=(x+1)223(x+1)+1x+1+3ln|x+1|+C

Simplifying:

int (x^3dx)/(x^2+2x+1) = ((x+1)^3-6(x+1)^2 +2)/(2(x+1)) + 3lnabs(x+1)+Cx3dxx2+2x+1=(x+1)36(x+1)2+22(x+1)+3ln|x+1|+C

int (x^3dx)/(x^2+2x+1) = (x^3-3x^2-9x-3)/(2(x+1)) + 3lnabs(x+1)+Cx3dxx2+2x+1=x33x29x32(x+1)+3ln|x+1|+C