Solve the equation 6sec^2x+3tan^2x-9=0 in the interval [0,2pi]?

1 Answer
Mar 23, 2017

x={pi/6,(5pi)/6,(7pi)/6,(11pi)/6}

Explanation:

In 6sec^2x+3tan^2x-9=0 putting sec^2x=1+tan^2x, we get

6(1+tan^2x)+3tan^2x-9=0

or 9tan^2x-3=0

or 3tan^2x-1=0

or (sqrt3tanx+1)(sqrt3tanx-1)=0

i.e. tanx=-1/sqrt3 or 1/sqrt3

and in the interval [0,2pi]

x={pi/6,(5pi)/6,(7pi)/6,(11pi)/6}