How do you prove that 1/2 sin^(-1) (4/5) = tan^(-1) (1/2) ?

4 Answers
Mar 23, 2017

See the Explanation.

Explanation:

Let, sin^-1(4/5)=alpha, and, tan^-1(1/2)=beta.

Then, we have to prove that, 1/2alpha=beta, or, alpha=2beta.

Now, sin^-1(4/5)=alpha rArr sinalpha=4/5, -pi/2lealphalepi/2.

But, sinalpha gt 0 rArr 0ltalphaltpi/2.

Similarly, tan^-1(1/2)=beta rArr tanbeta=1/2, 0ltbetaltpi/2.

In fact, tanbeta=1/2lt1=tan(pi/4), i.e., tanbeta lt tan(pi/4)...(1)

Recall that, tan fun. is uarr in (0,pi/2):. by,(1), 0ltbetaltpi/4.

Since, sec^2beta=1+tan^2beta=1+(1/2)^2=5/4

:. secbeta=+sqrt5/2, because, 0ltbetaltpi/4ltpi/2.

:. cosbeta=2/sqrt5, and, as, sinbeta=tanbeta*cosbeta,

sinbeta=1/sqrt5.

:. sin2beta=2sinbetacosbeta=2*1/sqrt5*2/sqrt5=4/5=sinalpha.

:. 0 lt beta lt pi/4 rArr 0 lt beta lt pi/2.

"Thus, "sinalpha=sin2beta," where, o"lt alpha, beta lt pi/2.

:. alpha=2beta, as desired.

Enjoy Maths.!

Mar 23, 2017

sin(2tan^-1(1/2))

=(2tan(tan^-1(1/2)))/(1-tan(tan^-1(1/2)))

=(2xx1/2)/(1+(1/2)^2)

=1/(1+1/4)

=1/(5/4)

=4/5

So

sin(2tan^-1(1/2))=4/5

=>2tan^-1(1/2)=sin^-1(4/5)

=>tan^-1(1/2)=1/2sin^-1(4/5)

Proved

Mar 23, 2017

See below.

Explanation:

Think that

arctan(a/b)=arcsin(a/sqrt(a^2+b^2))

and

arcsin(a/b)=arccos(sqrt(b^2-a^2)/b)

then

arctan(1/2)=arcsin(1/sqrt(2^2+1))=arcsin(1/sqrt5)

so

4/5 = sin(2arcsin(1/sqrt5))

but sin(2phi)=2sin(phi)cos(phi) so

4/5=2sin(arcsin(1/sqrt5))cos(arcsin(1/sqrt5))

and

4/5=2/sqrt(5)cos(arccos(2/sqrt(5)))=(2/sqrt(5))^2

Mar 23, 2017

Use: (2+i)^2 = 3+4i and de Moivre's formula...

Explanation:

Note that:

(2+i)^2 = 3+4i

Let alpha be the most acute angle in a right angled triangle with sides: 1, 2, sqrt(5).

Then tan alpha = 1/2

By de Moivre's formula, we find:

3+4i = (2+i)^2

color(white)(3+4i) = (sqrt(5)(cos alpha + i sin alpha))^2

color(white)(3+4i) = 5(cos 2alpha + i sin 2alpha)

So equating imaginary parts we find:

4 = 5 sin 2 alpha

So:

4/5 = sin 2 alpha

So:

sin^(-1) (4/5) = 2 alpha

So:

1/2 sin^(-1) (4/5) = alpha = tan^(-1) (1/2)