How do you prove that #1/2 sin^(-1) (4/5) = tan^(-1) (1/2)# ?

4 Answers
Mar 23, 2017

See the Explanation.

Explanation:

Let, #sin^-1(4/5)=alpha, and, tan^-1(1/2)=beta.#

Then, we have to prove that, #1/2alpha=beta, or, alpha=2beta.#

Now, #sin^-1(4/5)=alpha rArr sinalpha=4/5, -pi/2lealphalepi/2.#

But, #sinalpha gt 0 rArr 0ltalphaltpi/2.#

Similarly, #tan^-1(1/2)=beta rArr tanbeta=1/2, 0ltbetaltpi/2.#

In fact, #tanbeta=1/2lt1=tan(pi/4), i.e., tanbeta lt tan(pi/4)...(1)#

Recall that, #tan# fun. is #uarr# in #(0,pi/2):. by,(1), 0ltbetaltpi/4.#

Since, #sec^2beta=1+tan^2beta=1+(1/2)^2=5/4#

#:. secbeta=+sqrt5/2, because, 0ltbetaltpi/4ltpi/2.#

#:. cosbeta=2/sqrt5, and, as, sinbeta=tanbeta*cosbeta,#

# sinbeta=1/sqrt5.#

#:. sin2beta=2sinbetacosbeta=2*1/sqrt5*2/sqrt5=4/5=sinalpha.#

#:. 0 lt beta lt pi/4 rArr 0 lt beta lt pi/2.#

#"Thus, "sinalpha=sin2beta," where, o"lt alpha, beta lt pi/2.#

#:. alpha=2beta,# as desired.

Enjoy Maths.!

Mar 23, 2017

#sin(2tan^-1(1/2))#

#=(2tan(tan^-1(1/2)))/(1-tan(tan^-1(1/2)))#

#=(2xx1/2)/(1+(1/2)^2)#

#=1/(1+1/4)#

#=1/(5/4)#

#=4/5#

So

#sin(2tan^-1(1/2))=4/5#

#=>2tan^-1(1/2)=sin^-1(4/5)#

#=>tan^-1(1/2)=1/2sin^-1(4/5)#

Proved

Mar 23, 2017

See below.

Explanation:

Think that

#arctan(a/b)=arcsin(a/sqrt(a^2+b^2))#

and

#arcsin(a/b)=arccos(sqrt(b^2-a^2)/b)#

then

#arctan(1/2)=arcsin(1/sqrt(2^2+1))=arcsin(1/sqrt5)#

so

#4/5 = sin(2arcsin(1/sqrt5))#

but #sin(2phi)=2sin(phi)cos(phi)# so

#4/5=2sin(arcsin(1/sqrt5))cos(arcsin(1/sqrt5))#

and

#4/5=2/sqrt(5)cos(arccos(2/sqrt(5)))=(2/sqrt(5))^2#

Mar 23, 2017

Use: #(2+i)^2 = 3+4i# and de Moivre's formula...

Explanation:

Note that:

#(2+i)^2 = 3+4i#

Let #alpha# be the most acute angle in a right angled triangle with sides: #1#, #2#, #sqrt(5)#.

Then #tan alpha = 1/2#

By de Moivre's formula, we find:

#3+4i = (2+i)^2#

#color(white)(3+4i) = (sqrt(5)(cos alpha + i sin alpha))^2#

#color(white)(3+4i) = 5(cos 2alpha + i sin 2alpha)#

So equating imaginary parts we find:

#4 = 5 sin 2 alpha#

So:

#4/5 = sin 2 alpha#

So:

#sin^(-1) (4/5) = 2 alpha#

So:

#1/2 sin^(-1) (4/5) = alpha = tan^(-1) (1/2)#