tan^8 x -tan^4 x=tan^4x(tan^4x-1)=0tan8x−tan4x=tan4x(tan4x−1)=0
so we have
tan^4 x=0->tan x = 0tan4x=0→tanx=0
and
tan^4x-1=(tan^2x+1)(tan^2x-1)=(tan^2x+1)(tanx-1)(tanx+1)tan4x−1=(tan2x+1)(tan2x−1)=(tan2x+1)(tanx−1)(tanx+1)
Here tan^2x+1=0tan2x+1=0 is unfeasible so we will consider only
{(tanx=0),(tanx=1),(tanx=-1):}
and then
x = kpi uu x=pi/4+kpiuux=3/4pi+kpi for k=0,1,2,cdots
or
x={0,pi/4,3/4pi,pi,5/4pi,7/4pi,2pi}