Solve the equation 2cos^2xcotx=cotx within the interval 0<=x<2pi?

1 Answer
Mar 25, 2017

x=npi+pi/2 or x=npi+-pi/4 and within 0<=x<2pi, we have x={pi/4,pi/2,(3pi)/4,(5pi)/4,(3pi)/2,(7pi)/4}

Explanation:

2cos^2xcotx=cotx

hArr2cos^2xcotx-cotx=0

or cotx(2cos^2x-1)=0

or cotx(sqrt2cosx-1)(sqrt2cosx+1)=0

Hence either cotx=0 i.e. x=npi+pi/2

or cosx=1/sqrt2=cospi/4 or cosx=-1/sqrt2=cos((3pi)/4)

Hence x=npi+-pi/4

and within 0<=x<2pi, we have x={pi/4,pi/2,(3pi)/4,(5pi)/4,(3pi)/2,(7pi)/4}