Solve the trigonometric equation tan^2x+tanx-1=0 in general and in the interval [0,2pi)?

tan^2x+tanx-1=0

1 Answer
Mar 26, 2017

x=nxx180^@+31.7^@ or
x=nxx180^@-58.3^@,
where n is an integer
and in {0,2pi), x={31.7^@,121.7^@,211.7^@,301.7^@}

Explanation:

tan^2x+tanx-1=0

:.tanx=(-1+-sqrt(1^2-4xx1xx(-1)))/2

=(-1+-sqrt5)/2=(-1+-2.236)/2

i.e. -1.618 or 0.618

i.e. x=-58.3^@, x=31.7^@

Hence x=nxx180^@+31.7^@ or x=nxx180^@-58.3^@, where n is an integer

and in {0,2pi), x={31.7^@,121.7^@,211.7^@,301.7^@}