Question #209a9

1 Answer
Mar 24, 2017

Use the product rule :

dy/dx= (f(x)g(x))'=f'(x)g(x)+f(x)g'(x)

Explanation:

Use the product rule :

dy/dx= (f(x)g(x))'=f'(x)g(x)+f(x)g'(x)

let f(x) = e^(3x) and g(x) = sin(4x), then it follows that f'(x) = 3e^(3x) and g'(x)=4cos(4x)

dy/dx=(3e^(3x))(sin(4x))+(e^(3x))(4cos(4x))