Question #836cd

1 Answer
Mar 24, 2017

dy/dx=mcos(mx)cos(nx)-nsin(mx)sin(nx)

Explanation:

differentiate using the color(blue)"product rule"

"Given " y=g(x)h(x)" then"

color(red)(bar(ul(|color(white)(2/2)color(black)(dy/dx=g(x)h'(x)+h(x)g'(x))color(white)(2/2)|)))

color(orange)"Reminder : " d/dx(sin(f(x))=cos(f(x)).f'(x)

The same applies to d/dx(cos(f(x)))=-sin(f(x)).f'(x)

"here " g(x)=sin(mx)rArrg'(x)=mcos(mx)

"and " h(x)=cos(nx)rArrh'(x)=-nsin(nx)

rArrdy/dx=sin(mx)(-nsin(nx)+cos(nx)(mcos(mx)

color(white)(rArrdy/dx)=mcos(mx)cos(nx)-nsin(mx)sin(nx)