Question #332a8

1 Answer
Mar 25, 2017

I got: y=-ln(e^-x+1/e)

Explanation:

We can separate and write:
dx/e^x=dy/e^y
or:
e^-xdx=e^-ydy
integrate:
inte^-xdx=inte^-ydy
-e^-x+c=-e^-y
e^-y=e^-x+c
and taking the natural log of both sides:
ln(e^-y)=ln(e^-x+c)
-y=ln(e^-x+c)
y=-ln(e^-x+c)
when
x=0 then y=1 so:
1=-ln(c)
c=1/e
and finally:
y=-ln(e^-x+1/e)