3cscx-2sqrt3=0
Add 2sqrt3 to both sides
3cscxcancel(-2sqrt3)cancel(+2sqrt3)=cancel(0+)2sqrt3
3cscx=2sqrt3
Divide both sides by 3
(cancel3cscx)/cancel3=(2sqrt3)/3
cscx=(2sqrt3)/3
Replace cscx with 1/sinx and sqrt3/3 with 1/sqrt3
1/sinx=2/sqrt3
Raise both sides to the power of "-"1 and simplify
(1/sinx)^("-"1)=(2/sqrt3)^("-"1)
sinx=sqrt3/2
Use knowledge of special angles (or a calculator if you don't need an exact answer)
x=pi/3
Realize that sin(pi-theta)=sin(theta)
x=pi/3,(2pi)/3
Since x is unbounded and f(x+2npi)=f(x) when f(theta) is a trig function and ninZZ
{x:x=pi/3+2npi,(2pi)/3+2npi;ninZZ}