Question #0860e

2 Answers
Mar 29, 2017

Refer to The Explanation.

Explanation:

Recall that, sin^2x+cos^2x=1, and, tan^2x=1/cot^2x.

Hence," the L.H.S.="(1+cot^2x)/{1+1/cot^2x},

=(1+cot^2x)/{(1+cot^2x)/cot^2x},

=(cancel(1+cot^2x)){cot^2x/(cancel(1+cot^2x))},

=cot^2x,

"=the R.H.S."

Mar 29, 2017

"LS"=frac{sin^2x+cos^2x+cot^2x}{1+tan^2x}

=frac{1+cot^2x}{1+tan^2x}

Since color(red)(sin^2a+cos^2a=1), (Pythagorean identity) dividing by sin^2a gives another identity color(red)(1+cot^2a=csc^2a=1/sin^2a), and dividing the Pythagorean identity by cos^2a gives color(red)(tan^2a+1=sec^2a=1/cos^2a).

"LS"=frac{(1/sin^2x)}{(1/cos^2x)}

=frac{cos^2x}{sin^2x}

=cot^2x

"QED"