How do you prove: (2cos(2x))/(sin(2x))=cot(x)-tan(x)2cos(2x)sin(2x)=cot(x)tan(x)?

1 Answer
Mar 30, 2017

See below for proof.

Explanation:

Things you need to know & remember:

color(red)(ul("Double angle forumlas""))
color(white)("XXX")color(red)(cos(2theta)=cos^2(theta)-sin^2(theta))
color(white)("XXX")color(red)(sin(2theta)=2 sin(theta) cos(theta))

color(blue)(ul("Relation of " sin " and " cos " to " tan " and "cot))
color(white)("XXX")color(blue)(tan(theta)=(sin(theta))/(cos(theta))color(white)("XXX")cot(theta)=cos(theta)/sin(theta)

LS = (2cos(2x))/(sin(2x)

color(white)("XXX")=(cancel(2) * (cos^2(x)-sin^2(x)))/(cancel(2) * sin(x) * cos(x))

color(white)("XXX")=(cos^2(x))/(sin(x) * cos(x)) - (sin^2(x))/(sin(x) * cos(x))

color(white)("XXX")=cos(x)/sin(x) - sin(x)/cos(x)

color(white)("XXX")=cot(x) - tan(x)

color(white)("XXX")=RS