Find the value of sin(sec^(-1)(u/2))sin(sec1(u2))?

1 Answer
Mar 30, 2017

sin(sec^(-1)(u/2))=1/usqrt(u^2-4)sin(sec1(u2))=1uu24

Explanation:

Let sec^(-1)(u/2)=xsec1(u2)=x, then

secx=u/2secx=u2 and cosx=2/ucosx=2u

Therefore sinx=sqrt(1-cos^2x)sinx=1cos2x

= sqrt(1-(2/u)^2)1(2u)2

= sqrt(1-4/u^2)14u2

= sqrt((u^2-4)/u^2)u24u2

= 1/usqrt(u^2-4)1uu24

Now sinx=1/usqrt(u^2-4)sinx=1uu24, but x=sec^(-1)(u/2)x=sec1(u2)

Hence sin(sec^(-1)(u/2))=1/usqrt(u^2-4)sin(sec1(u2))=1uu24