cos x = cos(x/2 + x/2) = cos^2 (x/2) -sin^2 (x/2) =2 cos^2 (x/2) -1
cos x = 2 cos^2 (x/2) -1
cos x + 1 = 2 cos^2 (x/2)
(1 + cos x)/2 = cos^2 (x/2)
+- sqrt((1 + cos x)/2) = cos (x/2)-> proved for all x.
To find their value when x =pi/2
A . cos (x/2) = cos (pi/4) = 1/sqrt 2
B. +- sqrt((1 + cos x)/2) = +- sqrt((1 + cos (pi/2))/2)
= +- sqrt((1 + 0)/2) = +- sqrt(1/2) = +- sqrt1/sqrt 2 = +- 1/sqrt 2
since x in quadrant I, sqrt((1 + cos x)/2) = 1/sqrt 2