We know that cos(x)=-1/2 and that sin(x)>0, which means that sin(x) is a negative number.
Based on this information, let's make a coordinate grid for this problem. That will help us draw an accurate picture.
color(white)(----)color(white)(Sin)color(white)(-----)color(black)(|)color(white)(----)color(white)(All)color(white)(---------)
color(white)(----)Sincolor(white)(-----)color(black)(|)color(white)(----)Allcolor(white)(---------)
color(white)(----)color(white)(Sin)color(white)(-----)color(black)(|)color(white)(----)color(white)(All)color(white)(---------)
color(black)(----)color(white)(Sin)color(black)(-----)color(black)(|)color(black)(---------)
color(white)(----)color(white)(Tan)color(white)(-----)color(black)(|)color(white)(----)color(white)(Cos)color(white)(---------)
color(white)(----)Tancolor(white)(-----)color(black)(|)color(white)(----)Coscolor(white)(---------)
color(white)(----)color(white)(Tan)color(white)(-----)color(black)(|)color(white)(----)color(white)(Cos)color(white)(---------)
This shows the quadrant in which the answer is positive. I like to remember it by using the mnemonic device All Students Take Calculus.
In our problem, Sin in negative and so is Cos, so the picture has to lie in the 3^(rd) quadrant, where Tan is. That means all our ratios will be negative, except for those concerning tangent
Now, I like to draw a picture, but I can't do that on this program, so I'll just write it out.
cos=("adjacent")/("hypotenuse") or -1/2
If the hypotenuse is 2 and the leg is 1, we can find the remaining side using Pythagorean's theorem (c^2-b^2=a^2). That gives us sqrt3 as the other side.
So, just to summirize:
- adjacent =1
- hypotenuse =2
- opposite =sqrt3
Now we can solve everything:
sin=("opposite")/("hypotenuse") or -sqrt3/2
cos=("adjacent")/("hypotenuse") or -1/2
tan=("opposite")/("adjacent") or sqrt3/1 or just sqrt3
Now we find the inverses:
csc=1/(sin)=-2/sqrt3 or (-2sqrt3)/3
sec=1/(cos)=-2/1 or jsut -2
cot=1/(tan)=1/sqrt3 or sqrt3/3