Question #e9930
1 Answer
see explanation.
Explanation:
Utilise the
color(blue)"trigonometric identity"
color(red)(bar(ul(|color(white)(2/2)color(black)(sin^2theta+cos^2theta=1)color(white)(2/2)|))) From which:
sin^2theta=1-cos^2theta;cos^2theta=1-sin^2theta
• 1/(sin^2theta)-(cos^2theta)/(sin^2theta) Since both fractions have a common denominator we can subtract the numerators while leaving the denominator.
=(1-cos^2theta)/(sin^2theta)
=cancel(sin^2theta)^1/cancel(sin^2theta)^1larrcolor(red)("from above identity"
=1=" right side "rArr" verified"
• 1/(cos^2theta)+1/(sin^2theta) To obtain a
color(blue)" common denominator".
multiply the numerator/denominator of1/(cos^2theta)" by " sin^2theta"
multiply the numerator/denominator of1/(sin^2theta)" by " cos^2theta
rArr(sin^2theta)/(cos^2thetasin^2theta)+(cos^2theta)/(sin^2thetacos^2theta)
=(sin^2theta+cos^2theta)/(cos^2thetasin^2theta)
=1/(cos^2thetasin^2theta)larrcolor(red)" from above identity"
"Thus left side "=" right side "rArr" verified"
• 1/(1+sintheta)+1/(1-sintheta) To obtain a
color(blue)"common denominator" multiply numerator/denominator of fraction on left by
1-sintheta multiply the one on the right by
1+sintheta
=(1-sintheta)/((1+sintheta)(1-sintheta))+(1+sintheta)/((1-sintheta)(1+sintheta))
=(1cancel(-sintheta)+1cancel(+sintheta))/(1-sin^2theta)
=2/cos^2thetalarrcolor(red)" from above identity""
"left side "=" right side " rArr" verified"