Question #e9930

1 Answer
Apr 1, 2017

see explanation.

Explanation:

Utilise the color(blue)"trigonometric identity"

color(red)(bar(ul(|color(white)(2/2)color(black)(sin^2theta+cos^2theta=1)color(white)(2/2)|)))

From which: sin^2theta=1-cos^2theta;cos^2theta=1-sin^2theta

• 1/(sin^2theta)-(cos^2theta)/(sin^2theta)

Since both fractions have a common denominator we can subtract the numerators while leaving the denominator.

=(1-cos^2theta)/(sin^2theta)

=cancel(sin^2theta)^1/cancel(sin^2theta)^1larrcolor(red)("from above identity"

=1=" right side "rArr" verified"

• 1/(cos^2theta)+1/(sin^2theta)

To obtain acolor(blue)" common denominator".
multiply the numerator/denominator of 1/(cos^2theta)" by " sin^2theta"
multiply the numerator/denominator of 1/(sin^2theta)" by " cos^2theta

rArr(sin^2theta)/(cos^2thetasin^2theta)+(cos^2theta)/(sin^2thetacos^2theta)

=(sin^2theta+cos^2theta)/(cos^2thetasin^2theta)

=1/(cos^2thetasin^2theta)larrcolor(red)" from above identity"

"Thus left side "=" right side "rArr" verified"

• 1/(1+sintheta)+1/(1-sintheta)

To obtain a color(blue)"common denominator"

multiply numerator/denominator of fraction on left by 1-sintheta

multiply the one on the right by 1+sintheta

=(1-sintheta)/((1+sintheta)(1-sintheta))+(1+sintheta)/((1-sintheta)(1+sintheta))

=(1cancel(-sintheta)+1cancel(+sintheta))/(1-sin^2theta)

=2/cos^2thetalarrcolor(red)" from above identity""

"left side "=" right side " rArr" verified"