The roots of the quadratic 2x^2+3x-1=0 are alpha and beta. Without calculating the roots, find alpha^3+beta^3?
1 Answer
alpha^3 + beta^3 = -45/8
Explanation:
Suppose the roots of the general quadratic equation:
ax^2+bx+c = 0
are
"sum of roots" \ \ \ \ \ \= alpha+beta = -b/a
"product of roots" = alpha beta \ \ \ \ = c /a
So for the given quadratic with roots
2x^2+3x-1 = 0
we know that:
alpha+beta = -3/2 \ \ \ ; and\ \ \ alpha beta = -1/2
Consider the binomial expression:
\ \ \ \ \ (alpha+beta)^3 = alpha^3 + 3alpha^2 beta + 3alpha beta^2 + beta^3
:. (alpha+beta)^3 = alpha^3 + beta^3+ 3alpha beta(alpha+beta)
:. \ alpha^3 + beta^3 = (alpha+beta)^3 - 3alpha beta(alpha+beta)
Substituting our values of
alpha^3 + beta^3 = (-3/2)^3 - 3(-1/2)(-3/2)
" " = -27/8 - 9/4
" " = -45/8